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Abstract

A numerical investigation is made of three-dimensional natural convection of a Boussinesq-¯uid in a vertically-
mounted cylindrical container. The boundary conditions are such that the wall temperature yS is inhomogeneous in
the horizontal azimuthal direction but increases in the vertical direction. Interest is con®ned to ¯ows with globally-
stable strati®cations and with substantial azimuthal variations in thermal boundary conditions. Comprehensive

numerical solutions to the Navier±Stokes equations are obtained. A variety of speci®c thermal boundary conditions
are considered for detailed examination. Flow characteristics are described in broad ranges of principal
nondimensional parameters, i.e., the vertical and horizontal Rayleigh numbers, the container aspect ratio and the

Prandtl number. Three-dimensional ¯ow patterns are constructed. For large Rayleigh numbers, the azimuthal
inhomogeneity of boundary conditions is absorbed in the boundary layers. In the interior core, ¯ow is determined
mostly by the azimuthally-averaged temperature boundary condition. Exempli®cations are made for two cases: (1)

when yS is vertically uniform, and (2) when yS is a linear function of height. For both cases, the interior core is
stably-strati®ed, and on the planes of constant height, horizontal motions are present. Vertical and horizontal
pro®les of major ¯ow variables are plotted. The explicit e�ect of increasing the vertical gradient of yS on the global
¯ow structure is delineated. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Buoyant convection in an enclosure has been exten-
sively studied. Interest is often con®ned to the situ-

ations in which the buoyant e�ect is signi®cant such
that the representative system Rayleigh number Ra is

large. This implies that the entire ¯ow ®eld can be
divided into thin boundary layers and a practically
inviscid interior core. A canonical con®guration is that

of an incompressible Boussinesq-¯uid in a two-dimen-
sional rectangular cavity with di�erent, but constant,
temperatures at the two vertical sidewalls. The hori-

zontal walls are insulated. The benchmark numerical
solutions for a square cavity were published by Davis
[1], and various issues beyond the above-stated funda-

mental ¯ow model have been raised (see, e.g., [2]).
One key contention is the exploration of more
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realistic three-dimensional features. For example,

Refs. [3±6] considered a cubical box in which the

¯ow is maintained by di�erent, but constant tem-

peratures at the vertical walls. Refs. [7±10] reported

in general three-dimensional ¯ow features for cylind-

rical containers. These preceding investigations

revealed the global ¯ow patterns and heat transfer

characteristics of buoyancy-in¯uenced convection in

three-dimensional containers. It is noted that buoy-

ant convection in an enclosure is extremely sensitive

to the character and manner in which the boundary

conditions are imposed upon the system. Therefore,

any ®ndings of the previous research should be

viewed with caution since the results are speci®c to

the geometry and boundary conditions adopted in

those particular problem settings.

In this paper, e�orts are directed towards delineating

the three-dimensional ¯ow ®eld when there exist dis-

tinct azimuthal nonuniformities in the thermal bound-

ary conditions of a vertically-mounted cylindrical

enclosure. In the present setup, the boundary tempera-

ture pro®les on the cylindrical sidewall are gravitation-

ally stable, i.e., the boundary temperature increases

with height. However, ¯ow is generated by a continu-

ous variation of boundary temperature in the azi-

muthal direction in a given horizontal plane. As

emphasized earlier, the system-wide Rayleigh number

for the whole container is large, and, accordingly, a

boundary-layer-type ¯ow prevails in the cylinder. The

main question is the ¯ow behavior in the boundary

layers and in the interior which are initiated by the azi-

muthal nonuniformity of thermal boundary condition.

The present ¯ow con®guration is relevant to

industrial applications. An example can be found in

a cylindrical fuel tank when the sidewall tempera-

ture has azimuthal variations due to the oblique

insolation. Also, the present problem statement has

implications for the practical arrangement of grow-

ing high-quality crystals. In realistic situations, the

presence of azimuthal variations of thermal bound-

ary conditions is inevitable, and the transport

phenomena should be determined in accordance

with these imposed conditions.

A literature survey indicates that several prior inves-

tigations dealt with the aspects of three-dimensional

¯ows in an enclosure. Jischke and Doty [11] pursued

analytical methods to obtain solutions for unsteady

buoyant convection under gravitationally-stable ther-

mal boundary conditions. A classical modi®ed asymp-

totic expansion scheme was utilized, and the boundary

layer±inviscid interior coupling was exploited. The

resulting analytical solutions disclosed salient charac-

teristics in the interior for large Ra and for the Prandtl

number Pr0O�1�: Crespo and Bontoux [12] studied

the development of non-axisymmetric ¯ows in an axi-

symmetric cylinder heated at the bottom. The issue of

azimuthal dependence of temperature ®eld was dis-

cussed by several authors [13±18], principally in the

context of designing a crystal-growing furnace and at-

tendant technological apparatus.

Nomenclature

A aspect ratio �� H=R]
g gravitational acceleration
H height of cylinder

n frequency of sidewall boundary condition
p, P dimensional, dimensionless pressures ��

pR2=ra2�
Pr Prandtl number �� n=a�
r radial direction
R radius of cylinder

Ra overall Rayleigh number �� gbDTR3=na�
Sz strength of vertical strati®cation
T temperature
u, v, w velocities in x, y and z directions

U, V, W dimensionless velocities in x, y and z
directions �� uR=a, vR=a, wR=a�

x, y, z coordinates

X, Y, Z dimensionless coordinates
�� x=R, y=R, z=R]

Greek symbols
a thermal di�usivity
b volumetric expansion coe�cient

DT temperature di�erence �� �Tmax ÿ
Tmin�topwall�

n kinematic viscosity

f horizontal angle (azimuthal angle)
r density
T0 reference temperature �� �Tmax �

Tmin�topwall=2�
y dimensionless temperature �� �Tÿ

T0�=DT �

Subscripts
max maximum quantities
min minimum quantities

h horizontal direction
S sidewall
top top wall

v vertical direction
0 reference
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The objective of this paper is to conduct comprehen-
sive and systematically-organized numerical compu-
tations of fully-three-dimension ¯ows in a vertically-

mounted cylinder. The velocity and temperature data
in the entire region of the cylinder will be scrutinized,
and important parameters will be identi®ed. The ex-

plicit in¯uence of horizontal non-uniformity of the
sidewall condition on the prominent ¯ow character-
istics will be examined.

2. The ¯ow model

An incompressible ¯uid is contained in a vertically-
mounted closed cylindrical vessel (radius R, height H,
aspect ratio A � H=R), as sketched in Fig. 1. For a

Boussinesq-¯uid, the properly-nondimensionalized gov-
erning equations, using the coordinates (x, y, z ) with
corresponding velocity components (u, v, w ), read

@U

@X
� @V
@Y
� @W
@Z
� 0 �1�

U
@U

@X
� V

@U

@Y
�W
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@X
� Prr2U �2�

U
@V

@X
� V

@V

@Y
�W

@V

@Z

� ÿ @P
@Y
� Prr2V� Ra � Pr � y �3�

Fig. 1. Flow con®guration and coordinates.

Fig. 2. (52� 52) grid network in the x±y plane.
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In the above, nondimensionalization was implemented
as follows

�X, Y, Z� �
�
x

R
,
y

R
,
z

R

�
;

�U, V,W� �
�
uR

a
,
vR

a
,
wR

a

�
; P � pR2

ra2
;

y � Tÿ T0

DT
,

where T0 � �Tmax�Tmin�=2, and DT � �TmaxÿTmin�:

The lower-case symbols refer to the dimensional

quantities, and a the thermal di�usivity. The dimen-

sionless parameters are the Rayleigh number

Ra � gbDTH 3=na, the Prandtl number Pr � n=a, in

which n the kinematic viscosity, and the Boussineq-

¯uid relationship r � r0�1ÿ b�Tÿ T0�� is adopted.

Here, Tmax and Tmin represent, respectively, the maxi-

mum and minimum values of temperature that are

speci®ed at the boundary wall at the same height, say,

at Z � A=2:

In accordance with the problem statement, the

appropriate boundary conditions are

U � V �W � 0,
@y
@Z
� 0 at Z � 0, A �6�

Fig. 3. Perspective views of isotherms for the standard run. Pr = 0.71, n = 1, A = 2, Sz = 0. (a) Ra = 106; (b) Ra = 104.
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Fig. 4. Temperature and velocity ®elds in constant-height planes for the standard run. Sz = 0. The left column indicates tempera-

ture �y), the middle column horizontal velocities, and the right column vertical velocities. The vertical locations are: (a) Z = 1.9;

(b) Z = 1.5; (c) Z = 1.0; (d) Z = 0.5; (e) Z = 0.1.
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U � V �W � 0, yS � 1

2
cos�nf� � f �Z�, f �Z�

� �Z=Aÿ 1�Sz at the vertical sidewall

�7�

The sidewall temperature condition, yS in Eq. (7),
drives the buoyant convection in the cylinder. As is

apparent, f �Z � and cos�nf� indicate the vertical and
azimuthal variations of the imposed sidewall tempera-
ture, respectively. It is important that f �Z � is an
increasing function with Z, and f denotes the azi-

muthal angle. Clearly, the severity of the azimuthal in-
homogeneity of yS is represented by the index n. Also,
the vertical pro®le of yS is linear with height if Sz =

1.0, and a nonlinear variation of yS with height can be
modeled by adjusting Sz � Sz�Z �:
The use of Cartesian coordinates, instead of a

cylindrical frame, needs some explanation. As is well
known, if a cylindrical frame is adopted, special tech-
niques have to be utilized to overcome the compu-

tational singularity at the axis (see, e.g., [18]).
Furthermore, a large number of grid points will have
to be placed in the vicinity of the axis. In the present
problem, ¯ow details near the axis are not of primary

concern; therefore, such a concentration of grid points
in the neighborhood of the axis is not desirable. Based

on these considerations, the straightforward Cartesian

coordinates are selected. As remarked, the purpose of
this study lies in gaining an understanding of the

physical aspects of ¯ow, rather than in developing nu-
merical methodologies.

Fig. 2 exempli®es the grid network in the x±y plane.
The grids are indexed by choosing four corners

�f � 458, 1358, 2258 and 3158) on the periphery. The
present grid generation method stems from the Tho-
mas±Middleco� scheme [19] and the suggestions of

Ref. [20]. By undergoing a series of trials, the present
grid organization has been tested to perform e�ectively

with a high degree of accuracy. Grid stretching was
also deployed in the vertical direction. For most calcu-

lations, the typical grid used was (52 � 52 � 52). For
several sample runs, extensive grid-convergence tests

were conducted. Four di�erent meshs, i.e., (32 � 32 �
32), (42 � 42 � 42), (52 � 52 � 52) and (62 � 62 � 62)

were employed to compute the exemplary case of Ra
= 106, A = 2.0, Pr = 0.71. The computed velocity

®eld demonstrated a high degree of grid-independence
between the (52 � 52 � 52) and (62 � 62 � 62) meshs.
Similar trends were monitored in other sample calcu-

lation runs.

Numerical solutions to the above equations were
acquired by using the well-documented SIMPLE algor-

Fig. 5. Flow in the axial planes. Sz = 0. (a) The plane linking f � 08 and f � 1808; (b) the plane linking f � 908 and f � 2708:
The left column indicates temperature �y), and the right column velocities in the axial plane.
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ithm [21]. The general cartesian coordinates were uti-
lized, and the numerical procedures followed Peric

[20]. The nonlinear terms were discretized by employ-
ing the QUICK scheme [22], which is known to
enhance accuracy. In order to solve the discretized

pressure equation, the CGS solver [23] was adopted,
and for other dependent variables, the SIP solver [24]
was selected. Convergence was declared when the rela-

tive di�erences in nondimensional velocity and tem-
perature ®elds fell below 10ÿ4.
With a view toward establishing the robustness of

the numerical methodology, a variety of benchmark
testings were carried out, and cross-comparisons
were made of the average Nusselt numbers at the
vertical walls of a di�erentially-heated cubical enclo-

sure. Furthermore, for buoyant convection in a hori-
zontal cylinder, the maximum values of velocity
components were compared between the results of

[15] and the present calculations. These results were
highly consistent and mutually-supportive. These vali-
dation e�orts gave credence to the reliability and ac-

curacy of the numerical solution procedures of the
present paper.

3. Results and discussion

The mission here is to isolate the e�ect of the hori-

zontal variation of temperature at the sidewall on the

resulting three-dimensional buoyant ¯ow. For this pur-

pose, a standard set of parameter values is chosen: Ra

= 106, Pr = 0.71, A = 2.0, Sz = 0.0 and n = 1. The

value of Ra (=106) is considered to be su�ciently

large to render a boundary layer-type ¯ow, and air

�Pr � 0:71� was selected for the ¯uid. The parameter n

= 1 implies that, as seen in Eq. (7), the sidewall tem-

perature variation has a wavelength of the entire cir-

cumference of the cylinder. Also, in this standard case,

the sidewall temperature is uniform in the vertical

direction [Sz = 0.0].

Fig. 3 demonstrates the perspective views of iso-

therm surfaces in the cylinder. For comparison pur-

poses, the case of Ra = 104 is also included. For the

standard run (Ra = 106), Fig. 3(a) exhibits the emi-

nent characteristics of three-dimensional buoyant con-

vection. The azimuthal angles for the cut axial plane

displayed in Fig. 3 are f � 08 (corresponding to the lo-

cation of Tmax) and f � 1808 (Tmin), respectively. For

the case of Ra = 106, a distinct boundary layer is

seen, and in the bulk of the interior, the isotherm sur-

faces are nearly horizontal. Clearly, for the case of Ra

= 104, as illustrated in Fig. 3(b), the thickness of

boundary layer is larger than that of Ra = 106; fur-

thermore, the division of the ¯ow ®eld into the bound-

ary layer and interior is less distinct. It is also evident

that, for Ra = 104, due to the comparatively greater

Fig. 6. Vertical pro®les of temperature. Sz = 0. (a) f � 08, (b) f � 908: The radial locations are: ÐÐÐ, r/R = 1.0 (wall);

± ± ± ± ±, r/R = 0.95; -�-�-�-�-�-, r/R = 0.50; ±��±��±��±, r/R = 0.0.
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Fig. 7. Temperature and velocity ®elds in constant-height planes for the standard run. Sz = 1.0. The left column indicates tempera-

ture �y), the middle column horizontal velocities, and the right column vertical velocities. The vertical locations are: (a) Z = 1.9;

(b) Z = 1.5; (c) Z = 1.0; (d) Z = 0.5; (e) Z = 0.1.
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Fig. 8. Flow in the axial planes. Sz = 1.0. (a) The plane linking f � 08 and f � 1808; (b) the plane linking f � 908 and f � 2708:
The left column indicates temperature �y), and the right column velocities in the axial plane.

Fig. 9. Vertical pro®les of temperature. Sz = 1.0. (a) f � 08, (b) f � 908: The radial locations are: ÐÐÐ, r/R = 1.0 (wall);

± ± ± ± ± r/R = 0.95; -�-�-�-�-�-, r/R = 0.50; ±��±��±��±, r/R = 0.0.
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in¯uence of conduction, the deviations of the isotherm
surfaces in the interior from the horizontal plane are

larger than for Ra = 106. A general observation can
be made in the global temperature ®eld. The isotherm
surfaces show S-shaped patterns near the wall, which

are caused by the rising (sinking) motion in the vicinity
of f � 08 �f � 1808� regions. These ¯uid motions turn
into horizontal ¯ows near the top and bottom insu-

lated walls.
The detailed velocity structure for the standard run

is plotted in Fig. 4. The three components of velocity

in the horizontal cut planes are shown. It is signi®cant
to note that the azimuthal variation of the boundary
temperature is largely absorbed in the boundary layer
and that a uniform temperature prevails in much of

the interior region. The temperature variation at the
wall does not penetrate into the interior region, and

the temperature in the interior responds to the average
of the wall temperature. This qualitative assertion was
made by Jischke and Doty [11], and the present nu-

merical results are consistent with this ascertainment.
The horizontal ¯ows are concentrated in the bound-

ary layers near the horizontal endwalls (see rows (a)

and (e) of Fig. 4). In the top boundary layer (see row
(a) of Fig. 4), the horizontal ¯ows in the central por-
tions are generally from the hot side (near f � 08�
toward the cold side (near f � 1808), and the circuit is
closed by forming two circulation cells, i.e., one each
in the top and bottom hemisphere. In the bulk of in-
terior (see rows (b), (c) and (d) of Fig. 4), the horizon-

Fig. 10. Perspective views of isotherm surfaces. Ra = 106, Pr = 0.71, n = 1. (a) Sz = 1.0; (b) Sz = 10.0.
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tal ¯ows are weak (note the di�erence in scales for the

plots of horizontal velocities in Fig. 4). The horizontal
velocities in the interior sections of the cylinder display
rather complex patterns (see rows (b), (c) and (d) of

Fig. 4). Near the mid-height (see row (c) of Fig. 4), the
horizontal ¯ows in the y-direction appear along the di-
ameter linking f � 908 and f � 2708, and the overall

patterns of horizontal ¯ows constitute four cells. The
horizontal ¯ows originate from the regions of f � 908
and f � 2708, move toward the center of the horizon-
tal plane, and then diverge toward the hot �y � 08�
and cold �y � 1808� wall regions.
The results for the vertical velocity are informative.

In contrast to the horizontal velocities, the vertical vel-

ocity is greatest near the mid-height, and it decreases
as the location moves close to the horizontal endwalls.
In general, the vertical velocities are concentrated to

the boundary layers, and in much of the interior, the
vertical ¯ows are negligibly small. As clearly exhibited
in Fig. 4, in large portions of the boundary layer sur-

rounding the hot (cold) side, the vertical ¯ow is
upward (downward). The present description of the

global picture of vertical ¯ows is in qualitative accord
with the previous analytical studies [11].
Flow variables in the axial planes are displayed in

Fig. 5 for the standard case (Sz = 0). The ¯ow pattern
in the axial plane linking the hot �f � 08� and cold
regions �f � 1808� is qualitatively akin to that of the

benchmark two-dimensional cavity ¯ow. A single
counterclockwise circulating cell is visible, and, as

expected, ¯ow is very weak in the interior core. In the
neutral axial plane cutting through f � 908 and
f � 2708, due to symmetry, vertical velocities vanish at

the mid-height of the cylinder. This creates a four-cell
structure, as is discernible in Fig. 5(b), and the overall
magnitudes of velocities are very small. Throughout

the entire ¯ow region, the ¯uid is stably-strati®ed in
the bulk of the interior region.

In an e�ort to delineate the thermal response of the
interior region, the vertical pro®les of temperature at
various radial positions are exhibited in Fig. 6 for Sz

= 0. Clearly, at f � 08, the wall temperature is highest
�y � 0:5� and vertically uniform. However, due to

buoyant convective activities, both in the boundary
layer region (r = 0.95) and in the interior core, the
¯uid develops strati®cation. Also, at the neutral cir-

cumferential angle �f � 908), the wall temperature is
uniformly zero. However, the prevailing ¯uid strati®ca-
tion in the interior is manifested.

Next, the case of Sz = 1.0 in Eq. (7) is considered.
This indicates that the imposed temperature at the

cylindrical wall increases with height, which creates a
stably-strati®ed boundary condition from the outset.
The solutions viewed in constant-height planes are

exhibited in Fig. 7. In comparison to the results for Sz

= 0 in Fig. 4, the velocities for Sz = 1.0 are generally

smaller in magnitude (note the di�erence in scales used

in Figs. 4 and 7). These plots illustrate that ¯ows are

reduced in strength as the imposed strati®cation inhi-

bits vertical motions. In particular, horizontal vel-

ocities in the vicinity of the cylinder mid-height

become very small. Near the top endwall, the horizon-

tal ¯ows move to the left from the hot to the cold

regions. Near the bottom endwall, the situation is

opposite to that near the top endwall. As clearly

demonstrated in Fig. 7, the ¯uid temperature in the

horizontal planes in the interior core is largely uni-

form, and the temperature nonuniformities forced at

the cylindrical wall are absorbed in the thin boundary

layers. As stressed earlier, the ¯uid in the interior core

responds to the horizontally-averaged value of the tem-

perature imposed on the surface of the container.

The axial-plane plots for Sz = 1.0 are shown in

Fig. 8. The attenuation of velocities is evident. Also, a

strong vertical strati®cation is developed in the in-

terior, which is caused by the imposed temperature dis-

tribution at the wall. In comparison to the case of Sz

= 0, the results for Sz = 1.0 indicate that all three vel-

ocity components are reduced in magnitude and they

tend to be con®ned to thin boundary layers near the

cylindrical wall.

The vertical pro®les of temperature for Sz = 1.0 are

displayed in Fig. 9. At the azimuthal position corre-

sponding to the hot point �f � 08), the vertical gradi-

ents of temperature in the interior are substantially the

same as that on the wall. The values of temperature

themselves are lower than that at the wall due to the

¯uid motions in the cylinder. At the neutral azimuthal

Fig. 11. Variation of temperature with height at f � 08: Sz =

10.0.
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position �f � 908), both the gradients and magnitudes
of temperature in the interior are very close to those at

the wall.
The results for larger values of Sz are scrutinized.

The perspective views of temperature ®elds are por-

trayed in Fig. 10 for Sz = 1.0 and 10.0. Clearly, as Sz

increases, the stable strati®cation in the ¯uid interior is
distinct and the isotherms are highly ¯at and horizon-

tal in wider regions of the interior. Also, the vertical
temperature pro®les along a radial cut �f � 08� for Sz

= 10.0 are displayed in Fig. 11. Cross-comparisons of

the results in Figs. 6(a), 9(a) and 11 are revealing.
When Sz is large, the ¯uid in the entire domain, both
in the boundary and the interior, develops the vertical
temperature distribution which is very close to the

imposed sidewall temperature pro®le.

4. Conclusions

The computed results for three-dimensional buoyant
¯ows are summarized below.

When yS is vertically uniform, the azimuthal vari-
ation of the wall temperature is absorbed in the
boundary layer. The interior core is stably strati®ed

with horizontal isotherms. In the horizontal planes, the
¯uid moves from the hot to the cold regions, forming
two circulation cells near the endwall zones. Near the
mid-height, due to symmetry, the horizontal motions

produce a four-cell structure. In the axial planes link-
ing f � 08 and f � 1808, a single cell is visible; how-
ever, in the neutral axial plane linking f � 908 and

f � 2708, four cells are manifested.
When yS increases with height, the interior ¯uid

motions are reduced in magnitude. The interior core is

strongly strati®ed. The velocity patterns in the horizon-
tal planes and in the axial planes are characteristic of a
strati®ed ¯ow. The vertical gradients of temperature in

the interior become closer to that on the surface wall.
As Sz increases, broader regions of the interior have a
distinct and stable strati®cation. The vertical tempera-
ture pro®les in the interior domain become similar to

the imposed boundary wall temperature distributions.

Acknowledgements

This work was supported in part by a Guest Profes-
sorship to JMH at Kyushu University. Support was

also provided by AFERC (Pohang), KOSEF-RRC
(Sun Moon University), and the R&D Management
Center for Energy and Resources, South Korea.

References

[1] G. de Vahl Davis, Natural convection of air in a square

cavity: a benchmark numerical solution, International

Journal for Numerical Methods in Fluids 3 (1983) 249±

264.

[2] T. Fusegi, J.M. Hyun, Laminar and transitional natural

convection in an enclosure with complex and realistic

conditions, International Journal of Heat and Fluid

Flow 15 (4) (1994) 258±268.

[3] G.D. Mallinson, G. de Vahl Davis, Three-dimensional

natural convection in a box: a numerical study, Journal

of Fluid Mechanics 83 (1) (1977) 1±31.

[4] T. Fusegi, J.M. Hyun, A numerical study of 3D natural

convection in a cube: e�ects of the horizontal thermal

boundary conditions, Fluid Dynamics Research 8 (1991)

221±230.

[5] T. Fusegi, J.M. Hyun, K. Kuwahara, B. Farouk, A nu-

merical study of three-dimensional natural convection in

a di�erentially heated cubical enclosure, International

Journal of Heat and Mass Transfer 34 (6) (1991) 1543±

1557.

[6] T. Tagawa, H. Ozoe, Enhanced heat transfer rate

measured for natural convection in liquid gallium in a

cubical enclosure under a static magnetic ®eld, ASME

Journal of Heat Transfer 120 (1998) 1027±1032.

[7] M. Akamatsu, K. Kakimoto, H. Ozoe, Numerical com-

putation for the secondary convection in a Czochralski

crystal growing system with a rotating crucible and a

static crystal rod, Journal of Materials Processing &

Manufacturing Science 5 (1997) 329±348.

[8] K. Toh, H. Ozoe, Dopant concentration pro®le in a

Czochralski ¯ow of liquid metal in a vertical or a hori-

zontal magnetic ®eld, Journal of Crystal Growth 130

(1993) 645±656.

[9] T.H. Kuehn, R.J. Goldstein, An experimental and

theoretical study of natural convection in the annulus

between horizontal concentric cylinders, Journal of

Fluid Mechanics 74 (4) (1976) 695±719.

[10] C. Kleinstreuer, M. Lei, Transient buoyancy-induced

three-dimensional ¯ows in slender enclosures with coax-

ial heated cylinder, International Journal of Engineering

Science 32 (10) (1994) 1635±1646.

[11] M.C. Jischke, R.T. Doty, Linearized buoyant motion in

a closed container, Journal of Fluid Mechanics 71 (4)

(1975) 729±754.

[12] E. Crespo, D. Arco, P. Bontoux, Numerical solution

and analysis of asymmetric convection in a vertical

cylinder: an e�ect of Prandtl number, Physics of Fluids

A1 (8) (1989) 1348±1359.

[13] H. Potts, W.R. Wilcox, Thermal ®elds in the

Bridgman±Stockbarger technique, Journal of Crystal

Growth 73 (1985) 350±358.

[14] G.T. Neugebauer, W.R. Wilcox, Convection in the ver-

tical Bridgman±Stockbarger technique, Journal of

Crystal Growth 89 (1988) 143±154.

[15] J.P. Pulicani, J. Ouazzani, A Fourier±Chebyshev

psedospectral method for solving steady 3-D Navier±

Stokes and heat equations in cylindrical cavities,

Computers Fluids 20 (2) (1991) 93±109.

[16] J.P. Pulicani, S. Krukowski, J. Iwan, D. Alexander, J.

K.H. Chung et al. / Int. J. Heat Mass Transfer 43 (2000) 2289±23012300



Ouazzani, F. Rosenberger, Convection in an asymmetri-

cally heated cylinder, International Journal of Heat and

Mass Transfer 35 (9) (1992) 2119±2130.

[17] Y.H. Li, K.C. Lin, T.F. Lin, Computation of unstable

liquid metal convection in a vertical closed cylinder

heated from the side and cooled from above, Numerical

Heat Transfer Part A 32 (1997) 289±309.

[18] H. Ozoe, K. Toh, A technique to circumvent a singular-

ity at a radial center with application for a three-dimen-

sional cylindrical system, Numerical Heat Transfer Part

B 33 (1998) 355±365.

[19] P.D. Thomas, J.F. Middleco�, Direct control of the

grid point distribution in meshes generated by elliptic

equations, AIAA Journal 18 (1980) 626±656.

[20] M. Peric, Finite volume method for the prediction of

three-dimensional ¯uid ¯ow in complex ducts, PhD the-

sis, Imperial college, London, 1985.

[21] S.V. Patankar, Numerical Heat Transfer and Fluid

Flow, MacGraw-Hill, New York, 1980.

[22] B.P. Leonard, A stable and accurate convection model-

ing procedure based on quadratic upstream interp-

olation, Computer Methods in Applied Mechanics and

Engineering 19 (1979) 59±98.

[23] P. Sonneveld, CGS: a fast Lanczos type solver for non-

symmetric linear systems, SIAM Journal on Sci. Stat.

Comput 10 (1989) 36±52.

[24] H.L. Stone, Iterative solution of implicit approxi-

mations of multidimensional partial di�erence

equations, SIAM Journal on Numerical Analysis 5

(1968) 530±558.

K.H. Chung et al. / Int. J. Heat Mass Transfer 43 (2000) 2289±2301 2301


